MPH-04

June - Examination 2016

M.Sc. (Previous) Physics Examination Classical Electro Dynamics and Special Theory of Relativity

चिरसम्मत विद्युतगतिकी तथा सापेत्तिकता का विशिष्ट सिद्धान्त
Paper - MPH-04

Time: 3 Hours [Max. Marks: - 80

Note: The question paper is divided into three sections A, B and C. Write answers as per the given instructions. Check your paper code and paper title before starting the paper.

निर्देश: यह प्रश्न-पत्र 'अ', 'ब' और 'स' तीन खण्डों में विभाजित है। प्रत्येक खण्ड के निर्देशानुसार प्रश्नों के उत्तर दीजिए। प्रश्नपत्र करने से पूर्व प्रश्नपत्र कोड व प्रश्नपत्र शीर्षक जाँच लें।

Section - A $8 \times 2 = 16$

(Very Short Answer Questions)

Note: Answer **all** questions. As per the nature of the question delimit your answers in one word, one sentence or maximum upto 30 words. Each question carries 2 marks.

खण्ड - 'अ'

(अति लघु उत्तरीय प्रश्न)

निर्देश: सभी प्रश्नों के उत्तर दीजिए। अपने उत्तर को प्रश्नानुसार एक शब्द, एक वाक्य या अधिकतम 30 शब्दों में परिसीमित कीजिए। प्रत्येक प्रश्न 2 अंकों का है।

- 1) (i) Given the vector field $\overrightarrow{A} = 5x^2 \left(\sin \frac{\pi x}{2}\right) \hat{i}$ find $di \ \mathfrak{V} \overrightarrow{A}$ at x = 1.

 21 $\overrightarrow{A} = 5x^2 \left(\sin \frac{\pi x}{2}\right) \hat{i}$ find $di \ \mathfrak{V} \overrightarrow{A}$ at x = 1 and x = 1 are single-
 - यदि $\vec{A} = 5x^2 \left(\sin \frac{\pi x}{2}\right) \hat{i}$ तो di % \vec{A} का मान x = 1 पर ज्ञात कीजिये।
 - (ii) Express the field vectors \vec{E} and \vec{B} in terms of the electromagnetic potentials \vec{A} and ϕ .
 - क्षेत्र सिदश \vec{E} तथा \vec{B} को विभव \vec{A} तथा ϕ के रूप में व्यक्त कीजिए।
 - (iii) In free space, $\vec{E}(z,t) = 10^3 \sin(wt kz) \, \hat{y}\left(\frac{V}{m}\right)$ obtain $\vec{H}(z,t)$ मुक्त आकाश में $\vec{E}(z,t) = 10^3 \sin(wt kz) \, \hat{y}\left(\frac{V}{m}\right)$ तो $\vec{H}(z,t)$ को प्राप्त कीजिए।
 - (iv) If electric field $\vec{E}=2ax\,\hat{i}+3by\,\hat{j}+3cz\,\hat{k}$ the find the volume charge density. यदि विद्युत क्षेत्र $\vec{E}=2ax\,\hat{i}+3by\,\hat{j}+3cz\,\hat{k}$ तो आयतन आवेश घनत्व ज्ञात कीजिए।
 - (v) Is $E^2-B^2C^2$ invariant of the electromagnetic fields. क्या $E^2-B^2C^2$ विद्युत चुम्बकीय क्षेत्र का निश्चर है?

- (vi) How do the components of a four vector \mathbf{A}^{μ} transform under Lorentz transformation? किसी चतुर्सदिश \mathbf{A}^{μ} के घटक लोरेंन्टज रूपान्तर के अन्तर्गत किस प्रकार से रूपान्तरित होते हैं?
- (vii) Write the Lorentz gauge condition. लारेन्ज गेज की शर्त लिखिए।
- (viii) What is gauge in variance? गेज निश्चरता क्या है?

Section - B

 $4 \times 8 = 32$

(Short Answer Questions)

Note: Answer **any four** questions. Each answer should not exceed 200 words. Each question carries 8 marks.

(लघु उत्तर वाले प्रश्न)

निर्देश: किन्हीं चार प्रश्नों के उत्तर दीजिए। आप अपने उत्तर को अधिकतम 200 शब्दों में परिसीमित कीजिए। प्रत्येक प्रश्न 8 अंकों का है।

2) Derive the equation of continuity.

$$\frac{\partial p}{\partial t} + di \ \Im \vec{\tau} = 0$$

Give its physical significance.

निरन्तरता समीकरण

 $\frac{\partial p}{\partial t} + di \ \ \vec{\tau} = 0$ की व्युत्पत्ति दें तथा इस समीकरण की भौतिक सार्थकता भी बताइए।

- 3) Show that $\vec{E} \cdot \vec{B}$ is in variant under Lorentz transformation. सिद्ध करिए कि लोरेंज रूपान्तरण में $\vec{E} \cdot \vec{B}$ निश्चर रहता है।
- 4) Give multipole expansion of a localized charge distribution described by the change density $\zeta(\vec{r}')$. Write down the potential if we are far away from a localized charge distribution. एक स्थानिक आवेश वितरण का आवेश घनत्व $\zeta(\vec{r}')$ से परिभाषित है। इस आवेश वितरण के द्वारा किसी दूर के बिन्दु पर विद्युत विभव मल्टीपोल प्रसार श्रेणी के रूप में प्राप्त कीजिए।
- 5) A point charge q is located of at \vec{y} relative to the origin, around which is centered a grounded conducting sphere of radius a. Find the potential $\phi(\vec{x})$ at a point \vec{x} . Charge q is outside the sphere. Use method of images. एक बिन्दुवत आवेश q की स्थिति \vec{y} पर है, जब कि मूलबिन्दु ग्राउन्डेड चालक गोले के केन्द्र पर है। आवेश q चालक गोले से बाहर स्थित है। गोले की त्रिज्या a है। विभाव $\phi(\vec{x})$ का मान, किसी बिन्दु जिसका स्थिति सदिश \vec{x} है, परज्ञात करो। 'आवेश विम्ब विधि' का उपयोग करें।
- 6) Derive an expression for the electrostatic energy in dielectric media and show that it is equal to

$$W = \frac{1}{2} \in {}_{0} \int \vec{E} \cdot \vec{D} d^{3} x$$

किसी डाइइलेक्ट्रिक (परावैद्युत) माध्यम में निहित स्थिर वैद्युत ऊर्जा का व्यंजक प्राप्त करें, सिद्ध करें की इसका मान

$$\mathbf{W} = \frac{1}{2} \in {}_{0} \int \vec{\mathbf{E}} \cdot \vec{\mathbf{D}} \ d^{3} x \ \xi$$

- 7) Derive an expression for the power radiated by an accelerated charge q and show that its is equal to $P = \frac{2}{3} \left(\frac{1}{4\pi \in _0} \right) \frac{q^2 a^2}{c^3}$ Here a is acceleration. एक त्वरित आवेश q के द्वारा उत्सर्जित शक्ति का व्यंजक प्राप्त करें। सिद्ध करें कि उत्सर्जित शक्ति $P = \frac{2}{3} \left(\frac{1}{4\pi \in _0} \right) \frac{q^2 a^2}{c^3}$ यहाँ a आवेश का त्वरण है।
- 8) What is a wave guide? Assume that the walls of the waveguide are perfectly conducting and take the Z-axis along the waveguide.
 - (i) What are TE and TM waves?
 - (ii) Express Ex, Ey, Hx, Hy in terms of Ez. Show that Ez satisfies a two dimensional wave equation.

$$\Delta_2 \mathbf{E}_z + \mathbf{K}^2 \mathbf{E}_z = 0$$

Where Δ_2 being two dimensional Laplacian, and

$$K^2 = \frac{w^2}{c^2} - k_z^2 ?$$

तरंग पथक क्या है? यह मानकर चलें कि तरंग पथक की दीवार पूर्ण चालक है तथा अक्ष तरंग पथक की अक्षीय दिशा में है।

- (i) TE तथा TM तरंगे क्या हैं?
- (ii) Ex, Ey, Hx, Hy को Ez. के रूप में लिखें यह भी सिद्ध करें कि Ez एक द्विविभीय तरंग समीकरण

$$\Delta_2 \mathbf{E}_z + \mathbf{K}^2 \mathbf{E}_z = 0$$

को संतुष्ट करता है। यहाँ पर Δ_2 द्विविभीय लाप्लासियत संकारक है

तथा
$$K^2 = \frac{w^2}{c^2} - k_z^2$$
 ? है।

9) A current distribution gives rise to the vector magnetic potential $\vec{A} = x^2y\hat{i} + y^2x\hat{j} - 4xyz\,\hat{k}\left(\frac{wb}{m}\right)$. Calculate magnetic induction \vec{B} at point (-1, 1, 2). धारा वितरण निम्न सदिश चुम्बकीय विभव $\vec{A} = x^2y\hat{i} + y^2x\hat{j} - 4xyz\,\hat{k}$ $\left(\frac{wb}{m}\right)$ उत्पन्न करता है तो चुम्बकीय क्षेत्र \vec{B} बिंदु (-1, 1, 2) पर ज्ञात कीजिए।

Section - C

 $2 \times 16 = 32$

(Long Answer Questions)

Note: Answer **any two** questions. You have to delimit your each answer maximum upto 500 words. Each question carries 16 marks.

(खण्ड - स)

(दीर्घ उत्तरीय प्रश्न)

निर्देश: किन्हीं दो प्रश्नों के उत्तर दीजिए। उत्तर को अधिकतम 500 शब्दों में परिसीमित करना है। प्रत्येक प्रश्न 16 अंकों का है।

- 10) A point charge q is brought to a position a distance d away from an infinite plane conductor held at zero potential. Using the method of images, find:
 - (i) the surface charge density induced on the plane;
 - (ii) the force between the plane and the charge by using Coulomb's law for the force between the charge and its image;
 - (iii) the total force acting on the plane by integrating $\frac{\sigma^2}{2 \in_0}$ over the whole plane.
 - (iv) the work necessary to remove the charge q from its position to infinity.

एक बिन्दुवत आवेश q एक समतलीय d दूरी पर स्थित है। समतलीय चालक शून्य विभव पर है। आवेश – विम्ब – विधि का उपयोग करते हुए, प्राप्त करें:

- (i) समतलीय चालक सतह पर प्रेरित पृष्ठ-आवेश घनत्व,
- (ii) समतलीय चालक एवम् बिन्दुवत आवेश के मध्य बल (आवेश q तथा तथा प्रति बिम्ब आवेश के मध्य कूलॉम बल के सहायता से ज्ञात करे।
- (iii) समतलीय धरातल पर लगने वाला विद्युतीय बल का कुल परिमाण। यह बल $\frac{\sigma^2}{2 \in \Omega}$ को समतलीय धरातल पर इंटिग्रेट करने से प्राप्त होगा।
- (iv) आवेश q को अनंत तक हटाने में किये गये कार्य की गणना
- 11) (i) Write the Maxwell's equation for electromagnetic fields in a homogeneous medium with constant \in and μ . Hence reduce the wave equation for \overrightarrow{H} .
 - (ii) In free space, $\vec{E}(z, t) = 10^3 \sin(\cot \beta z) \hat{y}(\frac{V}{m})$ Obtain $\vec{H}(z, t)$.
 - (i) विद्युत चुम्बकीय क्षेत्रों के लिये मैक्सवेल समीकरण लिखें जबिक माध्यम समांगी है, μ तथा \in स्थिरांक हैं। इससे \overrightarrow{H} के लिए तरंग समीकरण प्राप्त करें।
 - (ii) फ्री-स्पेस (निर्वात) $\vec{E}(z,t) = 10^3 \sin(\cot \beta z) \hat{y}\left(\frac{V}{m}\right)$ में है। तो $\vec{H}(z,t)$ प्राप्त करें।
- 12) (i) How do the components of a four vector A_{μ} transform under Lorentz transformation?
 - (ii) Define electromagnetic field tensor $F_{\mu\nu}$. Write the components of $F_{\mu\nu}$
 - (iii) What are the in variants of electromagnetic field tensor $F_{\mu\nu}$?

- (i) किसी चर्तुविभीय सदिश A_{μ} के घटक लोरेंज रूपान्तरण के अन्तर्गत किस प्रकार रूपान्तरित होंगे?
- (ii) विद्युत चुम्बकीय फिल्ड टेंसर $F_{\mu\nu}$ को परिभाषित करें तथा $F_{\mu\nu}$ के घटकों को लिखें।
- (iii) विद्युत चुम्बकीय फील्ड टेंसर $F_{\mu \gamma 0}$ के निश्चर राशियाँ क्या हैं?
- 13) (i) Obtain the Lagrangian and Hamiltonian function of a charged particle q in an electromagnetic field. For non-relationistic motion show that the Lagrangian L is $L = \frac{1}{2} m \, \mathfrak{V}^2 (\phi \vec{\mathfrak{V}} \cdot \vec{A}) \text{ and Hamiltonian H is}$ $H = \frac{1}{2m} (\vec{P} q\vec{A})^2 + q\phi.$
 - (ii) Show that the momentum of charged particle in electromagnetic field is $\vec{P} m\vec{\psi} + q + \vec{A}$
 - (i) एक आवेशित कण q जो, कि विद्युत चुम्बकीय क्षेत्र में है, का लेगरेंजियन व हेमिल्टोनियन फलन प्राप्त करो। यदि आवेश q की गति आपेक्षिकीय नहीं है तो सिद्ध करें कि आवेशित करो। q का लेगरेंजियन फलन $L = \frac{1}{2} m \, v^2 (\phi \vec{v} \cdot \vec{A})$ होगा। तथा का हेमिल्टोनियन $H = \frac{1}{2m} \, (\vec{P} q \vec{A})^2 + q \phi$ होगा।
 - (ii) सिद्ध करो कि कण का संवेग $\vec{P} m\vec{\vartheta} + q + \vec{A}$ होगा।