MA/MSCMT-02

December - Examination 2019

M.A. / M.Sc. (Previous) Mathematics Examination

Real Analysis and Topology Paper - MA/MSCMT-02

Time: 3 Hours [Max. Marks: - 80

Note: The question paper is divided into three sections A, B and C. Write answers as per given instructions.

Section - A

 $8 \times 2 = 16$

(Very Short Answer Questions)

Note: Answer **all** questions. As per the nature of the question delimit your answer in one word, one sentence or maximum upto 30 words. Each question carries 2 marks.

- 1. i. Define σ ring.
 - ii. Define Lebesgue measure of a set.
 - iii. State Weierstrass approximation theorem.
 - iv. Define orthogonal elements.
 - v. State Minkowski's inequality.
 - vi Define Hilbert space.
 - vii. Define normal space.
 - viii. Define compact topological space.

Section - B

 $4 \times 8 = 32$

(Short Answer Questions)

Note: Answer **any four** questions. Each answer should not exceed 200 words. Each question carries 8 marks.

- 2. Let E is a measurable set, then for any set A show that $m^*(E \cup A) + m^*(E \cap A) \le m^*(E) + m^*(A)$
- 3 Show that every bounded measurable function f defined on a measurable set E is L-integrable.
- 4 If a function is summable on E, then show that it is finite almost everywhere on E.
- 5 Show that an orthonormal system $\{\phi_i\}$ is complete if it is closed.
- 6 State and prove Holder's inequality.
- Prove that in a T_2 space, a convergent sequence has a unique limit.
- 8 Show that regularity is a topological property.
- 9 Prove that every closed subset of locally compact space is locally compact.

Section - C

 $2 \times 16 = 32$

(Long Answer Questions)

Note: Answer **any two** questions. You have to delimit your each answer maximum upto 500 words. Each question carries 16 marks.

10. Prove that the necessary and sufficient condition for a bounded function f defined on the interval [a, b], to be L-integrable over [a, b] for the given $\epsilon > 0$, there exists a measurable partition P of [a, b] such that

$$U(f, P) - L(f, P) \le \epsilon$$
.

- 11. (i) Show that characteristic function of $A \subset X$ is continuous on X if A is both open and closed in X.
 - (ii) Show that every metric space is a T_2 -space.
- 12. Prove that outer measure of an interval is its length.
- 13. State and prove Riesz-Fisher theorem.