MA/MSCMT-02

December - Examination 2018

M.A. / M.Sc. (Previous) Mathematics Examination Real Analysis and Topology Paper - MA/MSCMT-02

Time: 3 Hours [Max. Marks: - 80

Note: The question paper is divided into three sections A, B and C.

Section - A

 $8 \times 2 = 16$

(Very Short Answer Type Questions)

Note: Examinees have to attempt all questions. Each question is of 02 marks and maximum word limit may be thirty words.

(1)

- 1) (i) Define ring of sets.
 - (ii) Define Bores measurable function.
 - (iii) State Weierstrass approximation theorem.
 - (iv) Write Minkowski's inequality.
 - (v) Define Hilbert space.
 - (vi) Define Topological space.
 - (vii) Define normal space.
 - (viii)Define compact topological space.

Section - B

 $4 \times 8 = 32$

(Short Answer Type Questions)

Note: Examinees will have to answer any four (4) questions. Each question is of 08 marks. Examinees have to delimit each answer in maximum 200 words.

- 2) Prove that the outer measure is translation invariants.
- 3) Show that every bounded measurable function f defined on a measurable set E is L-integrable.
- 4) Let $\langle f_n \rangle$ be a sequence of measurable functions defined on a measurable set E and $\lim_{n\to\infty} f_n(x) = f(x)$ on E, then prove that f is measurable on E.
- 5) Show that a sequence of functions in L^p space has a unique limit.
- 6) State and prove Holder's inequality.
- 7) Prove that homeomorphism is an equivalence relation in the family of topological spaces.
- 8) Show that regularity is a topological property.
- 9) Prove that the product space $(X \times Y, W)$ is compact if and only if each of the spaces (X, τ) and (Y, V) is compact.

Section - C

 $2 \times 16 = 32$

(Long Answer Type Questions)

Note: Examinees will have to answer any two (02) questions. Each question is of 16 marks. Examinees have to answer in maximum 500 words.

- 10) Show that every interval is measurable.
- 11) (i) Show that a function $f: X \rightarrow Y$ is continuous iff the inverse image of every closed subset of Y is a closed subset of X.
 - (ii) Prove that T_{∞} is a topology on X_{∞} .
- 12) Show that a subset *R* is connected iff it is an interval.
- 13) State and prove Riesz-Fisher theorem.

MA/ MSCMT-02 / 2700 / 3