## MA/MSCMT-04

## December - Examination 2019

## M.A. / M.Sc. (Previous) Mathematics

## Examination

Differential Geometry and Tensors

## Paper - MA/MSCMT-04

Time : 3 Hours ]
[ Max. Marks :- 80
Note: The question paper is divided into three sections A, B and C. Write answers as per given instructions.

## Section - A

$8 \times 2=16$

## (Very Short Answer Questions)

Note: Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum upto 30 words. Each question carries 2 marks.

1. i. Define inflexional tangent.
ii. Write equation of rectifying plane.
iii. Show that the distance between corresponding points of two involutes is constant.
iv. Define metric of a surface.
v. Define Trajectory of given family of curve.
vi. Define umbilic.
vii. Define symmetric tensor.
viii. State fundamental theorem of Riemannian geometry.

## Section - B

$4 \times 8=32$
(Short Answer Questions)
Note: Answer any four questions. Each answer should not exceed 200 words. Each question carries 8 marks.
2. Find the inflexional tangent at point $\left(x_{1}, y_{1}, z_{1}\right)$ of the surface $y^{2} z=4 a x$.
3. Find the developable surface which passes through the curve $y^{2}=4 a x, z=0$ and $y^{2}=4 b z, x=0$.
4. Prove that the metric of a surface is invariant under parametric transformation.
5. State and prove Meunier's theorem.
6. Prove that a curve on sphere is geodesic if and only if it is a great circle.
7. Prove that an entity whose inner product with an arbitrary tensor is a tensor, is itself a tensor.
8. Prove that the necessary and sufficient conditions that a system of co-ordinates be geodesic with the pole $p_{0}$ are that their second covariant derivatives, with respect to the metric of the space, all vanish at $p_{0}$.
9. Prove that if a Riemannian space $\mathrm{V}_{\mathrm{N}}(\mathrm{N}>2)$ is isotropic at each point in a region then the Riemannian curvature is constant throughout that region.

## Section - C

## (Long Answer Questions)

Note: Answer any two questions. You have to delimit your each answer maximum upto 500 words. Each question carries 16 marks.
10. For the curve $\mathrm{x}=\mathrm{a} \cos \theta, \mathrm{y}=\mathrm{a} \sin \theta, \mathrm{z}=\mathrm{a} \theta \tan \alpha$.

Find:
a. Radii of curvature 5
b. Torsion of curve 5
c. Involute of curve 6
11. a. On the paraboloid $x^{2}-y^{2}=z$, Find the orthogonal trajectories of the sections by the plane $z=$ constant.
b. Show that conjugate direction a a point P on a surface are parallel to conjugate diameters of the indicatrix at $P$.
12. a. Show that the Christoffel symbols are not tensor quantities.
b. State and prove Bonnet's theorem.
13. Find the principal section and principal curvature of the surface $x=a(u+v), y=b(u-v), z=u v$.

