MA/ MSCMT-04

December - Examination 2018

M.A. / M.Sc. (Previous) Mathematics Examination Differential Geometry and Tensors

 Paper - MA/ MSCMT-04

 Paper - MA/ MSCMT-04}

Time : 3 Hours]

[Max. Marks :- 80
Note: The question paper is divided into three sections A, B and C. Write answers as per the given instructions.

Section - A
$8 \times 2=16$
(Very Short Answer Questions)
Note: Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 2 marks.

1) (i) Define an inflexional tangent.
(ii) Define Osculating plane.
(iii) Define Bertrand curves.
(iv) Write down first and second fundamental forms.
(v) Write the statement of Meunier's theorem.
(vi) Write a formula to find principle radii through a point of the surface $z=f(x, y)$
(vii) Define geodesic.
(viii)Define contravariant and covariant vectors.

Note: Answer any four questions. Each answer should not exceed 200 words. Each question carries 8 marks.
2) Prove that if the circle $l x+m y+n z=0, x^{2}+y^{2}+z^{2}=2 c z$ has three point contact at the origin with the paraboloid $a x^{2}+b y^{2}=2 z$, then $c=\left(l^{2}+m^{2}\right)\left(b l^{2}+a m^{2}\right)$
3) Find the osculating plane at the point t on the helix $x=a \cos t, y=a \sin t, z=c t$.
4) Find the radii of curvature and torsion of a helix. $x=a \cos \theta, y=a \sin \theta, z=a \theta \tan \alpha$.
5) Find the equation of the right conoid generated by lines which meet OZ , are parallel to the plane XOY and intersect the circle $x=a, y^{2}+z^{2}=r^{2}$
6) Examine whether the surface $z=y \sin x$ is developable.
7) Prove that the law of transformation of a contravariant vector is transitive.
8) Show that:
(i) $g^{i j} g^{k l} d g^{i k}=-d g^{j l}$,
(ii) $g_{i j} g_{k l} d g^{i k}=-d g_{j}$,
9) If $A_{i j}$ is the curl of a covariant vector, prove that

$$
A_{i j, k}+A_{j k, i}+A_{k i, j}=0
$$

(Long Answer Questions)

Note: Answer any two questions. You have to delimit your each answer maximum up to 500 words. Each question carries 16 marks.
10) Find the envelope of the family of planes.

$$
F(x, y, z, \theta, \varphi) \equiv \frac{x}{a} \cos \theta \sin \varphi+\frac{y}{b} \sin \theta \sin \varphi+\frac{z}{c} \cos \varphi-1=0
$$

11) Find the principal sections and principal curvatures of the surface $x=a(u+v), y=b(u-v), z=u v$
12) State and prove Gauss-Bonnet theorem.
13) State and prove the necessary and sufficient condition for a space V_{N} to be flate.
