MA/ MSCMT-03
 June - Examination 2019
 M.A. / M.Sc. (Previous) Mathematics

Examination

Differential Equations, Calculus of Variations and Special Functions
 Paper - MA/ MSCMT-03

Time : 3 Hours]
[Max. Marks :- 80
Note: The question paper is divided into three sections A, B and C. Use of non-programmable scientific calculator is allowed in this paper.

Section - A
$8 \times 2=16$
(Very Short Answer Questions)
Note: This Section - A contains 8 (eight) very short answer type questions. All questions are compulsory. Each question carries 2 (two) marks and maximum word limit for each answer will be 30 words.

1) (i) Write down the Riccati's Equation.
(ii) Write Monge's subsidiary equation for $x^{2} r+2 x y s+y^{2} t=0$
(iii) Define Linear Functionals.
(iv) Write Bessel's Differential equation.
(v) Find the dimension of the following differential equation.

$$
2 x^{3} \frac{d^{2} y}{d x^{2}}=\left(y-x \frac{d y}{d x}\right)^{2}
$$

(vi) Find the condition for the second order partial differential equation $R s+S s+T t+F(x, y, z, p, q)=0$ is elliptic.
(vii) Write down Laplace Equation.
(viii)Check whether the boundary value problem
$y^{\prime \prime}+\lambda y=0 ; y^{\prime}(-\pi)=0 ; y^{\prime}(\pi)=0$ is a strum Liouville problem for $\lambda<0$

Section - B

$4 \times 8=32$
(Short Answer Questions)
Note: Section - B contains Eight Short Answer Type Questions Examinees will have to answer any four (04) question. Each question is of 8 marks. Examinees have to delimit each answer in maximum 200 words.
2) Solve $y_{1}=\cos x-y \sin x+y^{2}$
3) Find the eigen values and Eigen functions for following boundary value problem. $y^{\prime \prime}-2 y^{\prime}+\lambda y=0 \quad y(0)=0, y(\pi)=0$
4) Define Gauss's Hypergeometric series and discuss its convergence.
5) Use the method of separation of variables to solve following PDE. $\frac{\partial^{2} u}{\partial x^{2}}-2 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=0$
6) Solve in series $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0$
7) Prove that if $a+b+c>0$, then

$$
\lim _{x \rightarrow 0}\left\{(1+x)^{a+b-c}{ }_{2} F_{1}(a, b ; c ; x)\right\}=\frac{\Gamma(c) \Gamma(a+b-c)}{\Gamma(a) \Gamma(b)}
$$

8) Prove that $L_{n}(x)=\frac{e^{x}}{n!} \frac{d^{n}}{d x^{n}}\left(x^{n} e^{-x}\right)$
9) Prove that $L_{n}^{\alpha}(x, y)=\sum_{r=0}^{n} \frac{(1+\alpha)_{n}(1-y)^{n-r} y^{r} L_{r}^{\alpha}(x)}{(n-r)!(1+\alpha)_{r}}$

Section-C

$2 \times 16=32$
(Long Answer Questions)
Note: This Section - C contains 4 Long answer type questions. Examinees will have to answer any two (02) questions. Each question is of 16 marks. Examinees have to answer in maximum 500 words.
10) Solve $r=a^{2} t$ by Monge's method.
11) Reduce the equation $x y r-\left(x^{2}-y^{2}\right) s-x y t+p y-q x=2\left(x^{2}-y^{2}\right)$ to canonical form and hence solve it.
12) Obtain the surface of minimum area, stretched over a given closed curve C , enclosing the domain D in the $x y$ plane.
13) Solve the Gauss Hypergeometric equation.

$$
x(1-x) \frac{d^{2} y}{d x^{2}}+\{\gamma-(1+\alpha+\beta) x\} \frac{d y}{d x}-\alpha \beta y=0
$$

In series in the neighbourhood of the regular singular point
(i) $x=0$,
(ii) $x=1$,
(iii) $x=\infty$

