MA/ MSCMT-03

June - Examination 2018

M.A./M.Sc. (Previous) Mathematics Examination

 Differential Equations, Calculus of Variations and Special Functions.Paper - MA/ MSCMT-03

Time : 3 Hours]

[Max. Marks :- 80
Note: The question paper is divided into three sections A, B and C. Write answers as per the given instructions.

Section-A
$8 \times 2=16$
(Very Short Answer Type Questions)
Note: Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 2 marks.

1) (i) Solve $\frac{d^{2} y}{d x^{2}}=\sec ^{2} y \tan y$, given $y=0, \frac{d y}{d x}=1$ when $x=0$.
(ii) Write Monge's subsidiary equations for $y r+s(x-y)-t x+q-p=0$.
(iii) Write three dimensional wave equation in cylindrical coordinates.
(iv) Write Euler's equation for $f\left(x, y, y^{\prime}\right)$, when it is independent of x.
(v) What is difference between variation and differentiation?
(vi) Define Kummer function.
(vii) Write generating formula for Bessel's function $J_{n}(x)$.
(viii)Write orthogonal properties of Laguerre's polynomials.

Section - B

$4 \times 8=32$
(Short Answer Questions)
Note: Answer any four questions. Each answer should not exceed 200 words. Each question carries 8 marks.
2) Solve $x z^{3} d x-z d y+2 y d z=0$.
3) Classify the equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+3 \frac{\partial^{2} u}{\partial y^{2}}+84 \frac{\partial^{2} u}{\partial z^{2}}+28 \frac{\partial^{2} u}{\partial y \partial z}+16 \frac{\partial^{2} u}{\partial z \partial x}+2 \frac{\partial^{2} u}{\partial x \partial y}=0
$$

4) Find all Eigen values and Eigen functions of Sturm-Liouville problem

$$
y^{\prime \prime}+\lambda y=0 ; y(0)=0, y^{\prime}(\pi / 2)=0
$$

5) Determine the extremal of the functional $I=\int_{-a}^{a}\left[\frac{1}{2} \mu y^{\prime \prime 2}+\rho y\right] d x$ that satisfies the boundary conditions
$y(-a)=0, y^{\prime}(-a)=0, y(a)=0, y^{\prime}(a)=0$.
6) Derive integral representation of hypergemetric function.
7) Prove that

$$
P_{n}\left(-\frac{1}{2}\right)=P_{0}\left(-\frac{1}{2}\right) P_{2 n}\left(\frac{1}{2}\right)+P_{1}\left(-\frac{1}{2}\right) P_{2 n-1}\left(\frac{1}{2}\right)+\ldots \ldots .+P_{2 n}\left(-\frac{1}{2}\right) P_{0}\left(\frac{1}{2}\right)
$$

8) Prove that $H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x), n \geq 1$.
9) Prove that $\int_{0}^{\infty} e^{-s t} L_{n}(t) d t=\frac{1}{S}\left(1-\frac{1}{S}\right)^{n}$.

Note: Answer any two questions. You have to delimit your each answer maximum up to 500 words. Each question carries 16 marks.
10) Solve by Monge's method $r-t \cos ^{2} x+p \tan x=0$.
11) Solve the Laplace equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ subject to the following boundary conditions $u(x, 0)=u(x, b)=0$ for

$$
0 \leq x \leq a ; u(0, y)=0, u(a, y)=f(y) \text { for } 0 \leq y \leq b
$$

12) Solve in Series $\left(x-x^{2}\right) \frac{d^{2} y}{d x^{2}}+(1-5 x) \frac{d y}{d x}-4 y=0$.
13) Establish Linear relation between solutions of hyper geometric equations.
