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Note:	 The question paper is divided into three sections A, B and C. Write 
answers as per the given instructions.

	 Section - A	 8 × 2 = 16
(Very Short Answer Type Questions)

Note:	 Answer all questions. As per the nature of the question delimit 
your answer in one word, one sentence or maximum up to 30 
words. Each question carries 2 marks.

1)	 (i)	 Solve ,sec tan
dx

d y
y y2

2
2=   given ,y

dx
dy

0 1= =  when 0x = .

	 (ii)	 Write Monge's subsidiary equations for 
( )yr s x y tx q p 0+ - - + - = .

	 (iii)	 Write three dimensional wave equation in cylindrical 
coordinates.

	 (iv)	 Write Euler's equation for ( , , ),f x y yl  when it is independent of x.
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	 (v)	 What is difference between variation and differentiation?

	 (vi)	 Define Kummer function.

	 (vii)	Write generating formula for Bessel's function ( )J xn .

	 (viii)	Write orthogonal properties of Laguerre's polynomials.

	 Section - B	 4 × 8 = 32
(Short Answer Questions)

Note:	 Answer any four questions. Each answer should not exceed 
200 words. Each question carries 8 marks.

2)	 Solve  xz dx zdy ydz2 03 - + = .

3)	 Classify the equation
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4)	 Find all Eigen values and Eigen functions of Sturm-Liouville problem

	 0; (0) 0, ( /2) 0y y y ym r+ = = =m l

5)	 Determine the extremal of the functional I y y dx
2
1

a

a 2n t= +
-

m8 B#  
that satisfies the boundary conditions

	 ( ) , ( ) , ( ) , ( )y a y a y a y a0 0 0 0- = - = = =l l .

6)	 Derive integral representation of hypergemetric function.

7)	 Prove that
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8)	 Prove that ( ) ( ) ( ),H x xH x nH x n2 2 1n n n1 1 $= -+ - .

9)	 Prove that ( )e L t dt
s s
1
1
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n

0
= -

3 - ` j#  .
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	 Section - C	 2 × 16 = 32
(Long Answer Questions)

Note:	 Answer any two questions. You have to delimit your each 
answer maximum up to 500 words. Each question carries 16 
marks.

10)	 Solve by Monge's method cos tanr t x p x 02- + = .

11)	 Solve the Laplace equation 
x
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02
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2+ =  subject to

	 the following boundary conditions ( , ) ( , )u x u x b0 0= =   for

	  ; ( , ) , ( , ) ( )x a u y u a y f y0 0 0# # = =  for y b0 # #

12)	 Solve in Series ( ) ( ) .x x
dx

d y
x
dx
dy

y1 5 4 02
2

2

- + - - =

13)	 Establish Linear relation between solutions of hyper geometric 
equations.


