MA/ MSCMT-03

June - Examination 2018

M.A./M.Sc. (Previous) Mathematics Examination Differential Equations, Calculus of Variations and Special Functions.

Paper - MA/ MSCMT-03

Time: 3 Hours] [Max. Marks:- 80

Note: The question paper is divided into three sections A, B and C. Write answers as per the given instructions.

Section - A
$$8 \times 2 = 16$$

(Very Short Answer Type Questions)

Note: Answer **all** questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 2 marks.

1) (i) Solve
$$\frac{d^2y}{dx^2} = \sec^2 y \tan y$$
, given $y = 0$, $\frac{dy}{dx} = 1$ when $x = 0$.

- (ii) Write Monge's subsidiary equations for yr + s(x y) tx + q p = 0.
- (iii) Write three dimensional wave equation in cylindrical coordinates.
- (iv) Write Euler's equation for f(x, y, y'), when it is independent of x.

- (v) What is difference between variation and differentiation?
- (vi) Define Kummer function.
- (vii) Write generating formula for Bessel's function $J_n(x)$.
- (viii)Write orthogonal properties of Laguerre's polynomials.

 $4\times8=32$

(Short Answer Questions)

Note: Answer **any four** questions. Each answer should not exceed 200 words. Each question carries 8 marks.

- 2) Solve $xz^3 dx zdy + 2ydz = 0$.
- 3) Classify the equation

$$\frac{\partial^2 u}{\partial x^2} + 3\frac{\partial^2 u}{\partial y^2} + 84\frac{\partial^2 u}{\partial z^2} + 28\frac{\partial^2 u}{\partial y \partial z} + 16\frac{\partial^2 u}{\partial z \partial x} + 2\frac{\partial^2 u}{\partial x \partial y} = 0$$

- 4) Find all Eigen values and Eigen functions of Sturm-Liouville problem $y'' + \lambda y = 0$; y(0) = 0, $y'(\pi/2) = 0$
- 5) Determine the extremal of the functional $I = \int_{-a}^{a} \left[\frac{1}{2} \mu y''^2 + \rho y \right] dx$ that satisfies the boundary conditions

$$y(-a) = 0, y'(-a) = 0, y(a) = 0, y'(a) = 0.$$

- 6) Derive integral representation of hypergemetric function.
- 7) Prove that

$$P_n\left(-\frac{1}{2}\right) = P_0\left(-\frac{1}{2}\right)P_{2n}\left(\frac{1}{2}\right) + P_1\left(-\frac{1}{2}\right)P_{2n-1}\left(\frac{1}{2}\right) + \dots + P_{2n}\left(-\frac{1}{2}\right)P_0\left(\frac{1}{2}\right)$$

- 8) Prove that $H_{n+1}(x) = 2xH_n(x) 2nH_{n-1}(x), n \ge 1$.
- 9) Prove that $\int_0^\infty e^{-st} L_n(t) dt = \frac{1}{s} \left(1 \frac{1}{s}\right)^n.$

Section - C

 $2 \times 16 = 32$

(Long Answer Questions)

Note: Answer **any two** questions. You have to delimit your each answer maximum up to 500 words. Each question carries 16 marks.

- 10) Solve by Monge's method $r t \cos^2 x + p \tan x = 0$.
- 11) Solve the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ subject to the following boundary conditions u(x,0) = u(x,b) = 0 for $0 \le x \le a$; u(0,y) = 0, u(a,y) = f(y) for $0 \le y \le b$
- 12) Solve in Series $(x x^2) \frac{d^2 y}{dx^2} + (1 5x) \frac{dy}{dx} 4y = 0$.
- 13) Establish Linear relation between solutions of hyper geometric equations.