MA/MSCMT-01 June - Examination 2019

 M.A./M.Sc. (Previous) Mathematics

 M.A./M.Sc. (Previous) Mathematics

 Examination

 Examination

 Advanced Algebra

 Advanced Algebra

 Paper - MA/MSCMT-01

 Paper - MA/MSCMT-01}

Time : 3 Hours]

[Max. Marks :- 80
Note: The question paper is divided into three sections A, B and C. Write answers as per the given instructions. Use of non-programmable scientific calculator is allowed in this paper.

Section - A $8 \times 2=16$
(Very Short Answer Type Questions)
Note: Answer all Questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 2 marks.

1) (i) Define direct product of groups.
(ii) Define conjugate class.
(iii) Define solvable group.
(iv) Define Euclidean ring.
(v) Define algebraic field extention.
(vi) Define Galois group.
(vii) Define nullity of a linear transformation.
(viii)Define orthogonal linear transformation.

Section-B
$4 \times 8=32$
(Short Answer Type Questions)
Note: Answer any four questions. Each answer should not exceed 200 words. Each question carries 8 marks.
2) Prove that every group is isomorphic to a group of permutations.
3) Let G be a finite group and D be a set of distinct representatives g_{1}, $g_{2}, \ldots, g_{\mathrm{n}}$ one from each of the conjugate classes of G . Then show that

$$
|G|=\sum_{\mathrm{g} \in D}[G: N(\mathrm{~g})]=\sum_{i=1}^{n}[G: N(\mathrm{~g} i)]
$$

4) If N and G / N are solvable groups then show that G is a solvable group.
5) Let R be a Euclidean ring and a non zero, non unit $a \in R$. suppose that $a=s_{1}, s_{2} \ldots s_{m}=s_{1}{ }^{\prime} s_{2}^{\prime} \ldots s_{n}^{\prime}$, where s_{i} and s_{j}^{\prime} are prime elements of R . Then show that $\mathrm{m}=\mathrm{n}$ and each $s_{i}, 1 \leq i \leq m$ is an associate of some $s_{j}^{\prime}, 1 \leq j \leq n$ and conversely.
6) For every prime p and natural number $\mathrm{n} \geq 1$, show that there exists a finite field with p^{n} elements.
7) Let $A=[$ aij $]$ be an $n \times n$ matrix over a field F, then show that $\operatorname{det}(\mathrm{A})=\sum_{\sigma \in s_{n}} \in(\sigma) a_{\sigma(1) 1} a_{\sigma(2) 2} \ldots . a_{\sigma(n) n}$
8) Let V be an inner product space and $u, v \in V$ are arbitrary vectors of V, then prove that $|\langle u, v\rangle| \leq\|u\|\|v\|$
9) If $t_{1}: V \rightarrow V$ and $t_{2}: V \rightarrow V$ are linear transformations of a finite dimensional inner product space V to itself, then prove that $\left(t_{1} t_{2}\right)^{*}=t_{2}{ }^{*} t_{1}{ }^{*}$
where $t_{1}{ }^{*}$ denote adjoint of t_{1}.

Section-C
$2 \times 16=32$
(Long Answer Type Questions)

Note: Answer any two questions. You have to delimit your each answer maximum upto 500 words. Each question carries 16 marks.
10) Show that any two composition series of a group G are equivalent.
11) Let F be a field and let $p(x)$ be an arbitrary polynomial of positive degree over F . Then show that any two splitting fields of $p(x)$ are isomorphic. Also the isomorphic mapping can be so chosen that each element of F is mapped onto itself and the set of roots of $p(x)$ in one splitting field is mapped one-one onto the set of roots of $p(x)$ in another splitting field.
12) Let F be a field of characteristic zero containing all nth roots of unity. If $f(x) \in \mathrm{F}[x]$ is solvable by radicals over F , then show that the Galois group of $f(x)$ over F is solvable.
13) Show that any two finite dimensional vector spaces over the same field are isomorphic if and only if they are of the same dimension.

