MA/MSCMT-01

December - Examination 2019
 M.A./M.Sc. (Previous) Mathematics

Examination

Advanced Algebra

Paper - MA/MSCMT-01

Time : 3 Hours]
[Max. Marks :- 80
Note: The question paper is divided into three sections A, B and C. Write answers as per the given instructions.

Section-A
$8 \times 2=16$
(Very Short Answer Questions)
Note: Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 2 marks.

1) (i) Define conjugate elements in a group.
(ii) Define derived subgroup of a group.
(iii) Define composition series of a group.
(iv) Define sub module.
(v) Define splitting field.
(vi) Define Golois extension.
(vii) Define rank of a matrix.
(viii)Define orthonormal set.
Section - B
$4 \times 8=32$
(Short Answer Questions)
Note: Answer any four questions. Each answer should not exceed 200 words. Each question carries 8 marks.
2) If G_{1} and G_{2} be groups. Let $N i$ is normal in $G i, i=1,2$. Then show that $N_{1} \times N_{2}$ is normal in $G_{1} \times G_{2}$ and

$$
\left(G_{1} \times G_{2}\right) /\left(N_{1} \times N_{2}\right) \cong\left(G_{1} / N_{1}\right) \times\left(G_{2} / N_{2}\right)
$$

3) Prove that any two conjugate classes $\mathrm{C}[\mathrm{a}]$ and $\mathrm{C}[\mathrm{b}]$ of a group G are either disjoint or identical.
4) If G is a solvable group then show that every subgroup of G is also solvable.
5) Let K / F be a field extension and let $a \in k$ be algebraic over F . Then show that any two minimal monic polynomials for a over F are equal.
6) Let V and V^{\prime} are vector spaces and $t: V \rightarrow V^{\prime}$ is an isomorphism. Then show that $\left\{v_{1}, v_{2} \ldots . ., v_{n}\right\}$ is linearly independent if and only if $\left\{t\left(v_{1}\right), t\left(v_{2}\right), \ldots \ldots, t\left(v_{n}\right)\right\}$ is linearly independent.
7) For an $n \times n$ matrix A over a field F prove that $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$
8) Show that the eigen values of a self adjoint linear transformation are real.
9) Let R be a Eudidean ring. Then show that every non zero element in R can be written as the product of a finite number of prime elements of R or is a unit in R.

Section-C

$2 \times 16=32$
(Long Answer Questions)
Note: Answer any two questions. You have to delimit your each answer maximum up to 500 words. Each question carries 16 marks.
10) Let M be an R module and $N_{1}, N_{2}, \ldots N_{k}$ be sub modules of M . Then show that the following statements are equivalent.
(i) $M=N_{1} \oplus N_{2} \oplus \ldots \ldots \oplus N_{k}$
(ii) If $n_{1}+n_{2}+\ldots+n_{k}=0$ then $n_{1}=n_{2}=\ldots=n_{k}=0$ for $n_{i} \in N_{1}$
(iii) $N i \cap\left(N_{1}+\ldots . .+N_{i-1}+N_{i+1}+\ldots \ldots+N_{k}\right)=\{0\}$
11) Let F be a field of characteristic zero and let two elements a and b in some extension field of F be algebraic over F . Then show that there exists an element $C \in F(a, b)$ such that $F(c)=F(a, b)$
12) Let V and V^{\prime} vector spaces $t: V \rightarrow V^{\prime}$ be linear transformation and V is finite dimensional. Then show that :
$\operatorname{dim} V=\operatorname{rank}(t)+$ nullity (t)
13) Show that every finite dimensional vector space V with an inner product space has an orthonormal basis.

