MA/ MSCMT-01

December - Examination 2018

M.A./M.Sc. (Previous) Mathematics Examination

Advanced Algebra

Paper - MA/ MSCMT-01

Time : 3 Hours]

[Max. Marks :- 80
Note: The question paper is divided into three sections A, B and C. Write answers as per the given instructions.

Section - A
$8 \times 2=16$
(Very Short Answer Questions)
Note: Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 2 marks.

1) (i) State Cayley's theorem.
(ii) Define direct product of groups.
(iii) Define composition series.
(iv) Define Kernel of a linear transformation.
(v) Define splitting field.
(vi) Define Galois extension.
(vii) Define nullity of a matrix.
(viii)Define orthonormal set.
(Short Answer Type Questions)
Note: Answer any four questions. Each question is of 8 marks. Examinee have to delimit each answer in about 200 words.
2) If H and K are subgroups of G with K normal in G . Then show that $H \cap K$ is a normal subgroup of H and $H K / K \cong H /(H \cap K)$
3) Prove that two conjugate classes $\mathrm{C}[\mathrm{a}]$ and $\mathrm{C}[\mathrm{b}]$ of a group G are either disjoint or identical.
4) Prove that every finite group G has a composition series.
5) Let $\phi: \mathrm{M} \rightarrow \mathrm{M}^{\prime}$ be an R - module homomorphism. Then show that Ker ϕ and image set $\phi(\mathrm{M})$ are sub modules of M and M^{\prime} respectively.
6) If E is a normal extension of a field F and K is an intermediate field so that F C K C E. Then show that E is also a normal extension of K.
7) Let H be a sub group of all automorphisms of field K . Then show that the fixed field of H is a sub field of K .
8) Let $\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots \ldots . \mathrm{V}_{n}\right\}$ be a set of vectors in inner product space V such that they are pairwise orthogonal. Then show that

$$
\left\|\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~V}_{\mathrm{i}}\right\|^{2}=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left\|\mathrm{~V}_{\mathrm{i}}\right\|^{2}
$$

9) If $t_{1}: V \rightarrow V$ and $t_{2}: V \rightarrow V$ are linear transformation of a finite dimensional inner product space V to it self. Thus show that $\left(\mathrm{t}_{1} \mathrm{t}_{2}\right)^{*}=\mathrm{t}_{2}{ }^{*} \mathrm{t}_{1}{ }^{*}$, where t_{1}^{*} denote adjoint of t_{1}.

Note: Answer any two questions. Each question is of 16 marks. Examinee have to delimit each answer in about 500 words.
10) Show that a group G is solvable if and only if $G^{(n)}=\{e\}$ for some $n \in \mathrm{~N}$.
11) If F is a field, then show that every polynomial $f(x) \in \mathrm{F}(x)$ has a splitting field.
12) Let V and V^{1} be vector spaces over a field F . Let $\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots . . \mathrm{V}_{n}\right\}$ be a basis of V . Then show that there exists a unique linear transformation $\mathrm{t}: \mathrm{V} \rightarrow \mathrm{V}^{1}$ for any list $\left[b_{1}^{1}, b_{2}^{1}, \ldots \ldots, b_{n}^{1}\right]$ of vectors in V^{1} such that $t\left(b_{1}\right)=b_{1}^{\prime}, t\left(b_{2}\right)=b_{2}^{\prime}, \ldots ., t\left(b_{n}\right)=b_{n}^{\prime}$.
13) Show that every finite dimensional vector space V with an inner product has an orthonormal basis.

