MA / MSCMT-07

June - Examination 2017

M.A./M.Sc. (Final) Mathematics Examination Viscous Fluid Dynamics Paper - MA / MSCMT-07

Time: 3 Hours [Max. Marks: - 80

Note: The question paper is divided into three sections A, B and C. Write answers as per given instructions.

Section - A

 $8 \times 2 = 16$

(Very Short Answer Questions)

Note: Answer **all** questions. As per the nature of the question delimit your answer in one word, one sentence or maximum upto 30 words. Each question carries 2 marks.

- 1) (i) Define shearing strain.
 - (ii) Write Navier Stoke's equation.
 - (iii) Define Grashoff number.
 - (iv) Define coefficient of skin friction.
 - (v) Define stagnation point.
 - (vi) Write Stoke's equation for slow motion.

- (vii) Define boundary layer thickness(δ).
- (viii) Define momentum thickness (δ_9).

Section - B

 $4 \times 8 = 32$

(Short Answer Questions)

Note: Answer **any four** questions. Each answer should not exceed 200 words. Each question carries 8 marks.

- Explain inspection analysis of the flow of viscous compressible fluid.
- 3) Velocity field at a point is given by 1 + 2y 3z, 4 2x + 5z, 6 + 3x 5y. Prove that it represent a rigid body motion.
- 4) Describe flow between two concentric rotating cylinders (couette flow).
- 5) Describe flow due to a rotating disc and write Navier Stokes equation for flow due to a rotating disc.
- 6) Explain suction in flow between two porous parallel plates.
- Explain boundary layer and applications of boundary layer theory.
- 8) Derive boundary layer equations for the flow past a solid plane wall by using asymptotic approach.
- 9) Explain Blasius series solution.

Section - C

 $2 \times 16 = 32$

(Long Answer Questions)

- **Note:** Answer **any two** questions. You have to delimit your each answer maximum upto 500 words. Each question carries 16 marks.
- 10) Derive equations of energy for the motion of a viscous compressible Newtonian fluid.
- 11) Explain:
 - (i) Stoke's First Problem.
 - (ii) Stoke's Second Problem
- 12) Describe temperature distribution in a pipe when wall is at uniform temperature gradient
- 13) Describe Oseen's flow past a sphere.