MA/MSCMT-10

December - Examination 2019

M.A./M.Sc. (Final) Mathematics Examination

 Mathematical Programming
Paper - MA/MSCMT-10

Time : 3 Hours]
[Max. Marks :- 80
Note: The question paper is divided into three sections A, B and C. Write answers as per given instructions.
Use of non-programmable scientific calculator / simple calculator allowed in this paper.

Section-A
$8 \times 2=16$
(Very Short Answer Type Questions)
Note: Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum upto 30 words. Each question carries 2 marks.

1. i. Define hyperplane.
ii. What is the importance of integer programming problem?
iii. Define positive definate matric.
iv. What do you mean by relative minimum?
v. Write difference between convex programming problem and non-linear programming problem.
vi. Define convex separable programming problem.
vii. State Bellman's principle of optimality
viii. Define quadratic programming problem.

Note: Answer any four questions. Each answer should not exceed 200 words. Each question carries 8 marks.
2. Prove the $\mathrm{f}(x)=\frac{1}{x}$ is strictly convex for $x>0$ and strictly concave for $x<0$.
3. Solve the following integer programming problem by branch and bound algorithm.
$\min \mathrm{z}=2 x_{1}+6 x_{2}$

$$
\begin{array}{ll}
\text { s.t. } & 3 x_{1}+x_{2} \leq 5 \\
& 4 x_{1}+4 x_{2} \leq 9 \\
& x_{1}, x_{2} \geq 0 \text { and are integers. }
\end{array}
$$

4. Find the dimensions of a rectangular parallelopiped with largest volume to be inscribed in ellipsoid.
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{\mathrm{~b}^{2}}+\frac{\mathrm{z}^{2}}{\mathrm{c}^{2}}=1$
5. Solve the following non-linear programming problem graphically. $\max f\left(x_{1}, x_{2}\right)=x_{1}+2 x_{2}$

$$
\begin{array}{ll}
\text { s.t. } & x_{1}^{2}+x_{2}^{2} \leq 1 \\
& 2 x_{1}+x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

6. Derive the dual of quadratic programming problem.
$\min f(\mathrm{X})=\mathrm{C}^{\mathrm{T}} \mathrm{X}+\frac{1}{2} \mathrm{X}^{\mathrm{T}} \mathrm{GX}$
s.t. $A X \geq b$

Where A is an $m x n$ real matrix and G is an $n x n$ real positive semidefinite asymmetric matrix.
7. Divide a quantity ' b ' into n parts in such a way that their product is maximum.
8. Solve following linear programming problem by dynamic programming.
$\max \mathrm{z}=3 x_{1}+7 x_{2}$

$$
\begin{array}{ll}
\text { s.t. } & x_{1}+4 x_{2} \leq 8 \\
& x_{2} \leq 8 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

9. use Kuhn - Tucker conditions to solve the following non - linear programming problem.
$\max f(x)=8 x-x^{3}$

$$
\begin{array}{ll}
\text { s.t. } & x \leq 3 \\
& x \geq 0
\end{array}
$$

Section-C

$2 \times 16=32$

(Long Answer Type Questions)

Note: Answer any two questions. You have to delimit your each answer maximum upto 500 words. Each question carries 16 marks.
10. Solve the following linear programming problem by revised simplex method.

$$
\begin{aligned}
\max \mathrm{z}= & 2 x_{1}+x_{2} \\
& 3 x_{1}+4 x_{2} \leq 6 \\
& 6 x_{1}+x_{2} \leq 3 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

11. Solve the following integer programming problem.
$\max z=2 x_{1}+10 x_{2}-10 x_{3}$

$$
\begin{array}{ll}
\text { s.t. } & 2 x_{1}+20 x_{2}+4 x_{3} \leq 15 \\
& 6 x_{1}+20 x_{2}+4 x_{3}=20 \\
& x_{1}, x_{2}, x_{3} \geq 0 \text { and are integers. }
\end{array}
$$

12. Solve the following quadratic programming problem by Beak's method.

$$
\begin{array}{cl}
\max f\left(x_{1},\right. & \left.x_{2}\right)=2 x_{1}+3 x_{2}-2 x_{1}^{2} \\
\text { s.t. } & x_{1}+4 x_{2} \leq 4 \\
& x_{1}+2 x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

13. Solve the following convex separable programming problem. $\min \mathrm{z}=x_{1}^{2}-2 x_{1}-x_{2}$

$$
\begin{array}{ll}
\text { s.t. } & 2 x_{1}^{2}+3 x_{2}^{2} \leq 6 \\
& \text { and } x_{1}, x_{2} \geq 0
\end{array}
$$

