MA/MSCMT-09

December - Examination 2019

M.A./M.Sc. (Final) Mathematics Examination

 Integral Transforms and Integral Equations Paper - MA/MSCMT-09
Time : 3 Hours]

[Max. Marks :- 80
Note: The question paper is divided into three sections A, B and C. Write answers as per the given instructions. Use of non-programmable scientific calculator is allowed in this paper.

Section-A
$8 \times 2=16$

(Very Short Answer Questions)

Note: Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 2 marks.

1) (i) If $L\left\{\frac{\sin t}{t}\right\}=\tan ^{-1}\left(\frac{1}{s}\right)$ then find $L\left\{\frac{\sin 2 t}{t}\right\}$
(ii) Find Inverse Laplace transform of $\frac{1}{(4 s+3)}$
(iii) Define Fourier cosine transformation.
(iv) If $M\{f(x) ; p\}=F(p)$ then find $M\left\{x^{a} f(x) ; p\right\}$
(v) If $H_{v}\{f(x) ; p\}=F_{v}(p)$ then find $H_{v}\{f(a x) ; p\}$
(vi) Define separable Kernal.
(vii) Define Abel Integral equation.
(viii)Define resolvent Kernal.
Section - B
$4 \times 8=32$
(Short Answer Questions)
Note: Answer any four questions. Each answer should not exceed 200 words. Each question carries 8 marks.
2) Find Laplace transform of $\left(\frac{1-\cos t}{t^{2}}\right)$
3) Prove that $L^{-1}\left\{\frac{e^{-1 / p}}{\sqrt{p}} ; t\right\}=\frac{\cos 2 \sqrt{t}}{\sqrt{\pi t}}$
4) \quad Solve $\left(D^{2}+9\right) y=\cos 2 t$ If $y(0)=1, y\left(\frac{\pi}{2}\right)=-1$
5) Prove that if n is a positive integer then

$$
M\left[\left(x \frac{d}{d x}\right)^{n} f(x) ; p\right]=(-1)^{n} p^{n} F(p) \text { where } M[f(x) ; p]=F(p)
$$

6) Find Hankel transform of $x^{v} e^{-a x}$ taking $x J_{v}(p x)$ as the Kernel.
7) Transform $\frac{d^{2} y}{d x^{2}}+x y=1: y(0)=0, y(1)=1 \quad$ into an integral equation.
8) Prove that the characteristics numbers of a symmetric Kennel are real.
9) Find the resolvent Kernel of following Kernel

$$
K(x, t)=(1+x)(1-t): a=-1, b=0
$$

Section - C

$2 \times 16=32$
(Long Answer Questions)
Note: Answer any two questions. You have to delimit your each answer maximum up to 500 words. Each question carries 16 marks.
10) Use Parseval's Identity to prove that
(a) $\int_{0}^{\infty} \frac{t^{2} d t}{\left(1+t^{2}\right)\left(4+t^{2}\right)}=\frac{\pi}{6}$
(b) $\int_{0}^{\infty} \frac{d t}{\left(1+t^{2}\right)^{2}}=\frac{\pi}{4}$
11) Find the potential $V(r, z)$ of a field due to a flat circular disc of unit radius with its centre at the origin and axis along the Z -axis satisfying the differential equation.
$\frac{\partial^{2} v}{\partial r^{2}}+\frac{1}{r} \frac{\partial v}{\partial r}+\frac{\partial^{2} v}{\partial z^{2}}=0,0 \leq r \leq \infty, z \geq 0$ and satisfying the boundary conditions $V=V_{0}$ when $z=0,0 \leq r<1$ and $\frac{\partial v}{\partial z}=0$ when $z=0, r>1$
12) (i) Solve the Integral equation

$$
g(x)=x+\lambda \int_{-\pi}^{\pi}\left(x \cos t+t^{2} \sin x+\cos x \sin t\right) g(t) d t
$$

(ii) Solve the integral equation

$$
g(x)=1+\int_{0}^{x} \sin (x-t) g(t) d t \text { and verify your answer }
$$

13) (i) Solve by iterative method

$$
g(x)=1+\int_{0}^{\pi} \sin (x+t) g(t) d t
$$

(ii) Solve the following integral equation

$$
g(x)=x+\lambda \int_{0}^{1}\left(4 x t-x^{2}\right) g(t) d t
$$

