MA/MSCMT-06

June - Examination 2018

M.A./M.Sc. (Final) Mathematics Examination

 Analysis and Advanced Calculus Paper - MA/MSCMT-06
Time : 3 Hours]

[Max. Marks :- 80

Note: The question paper is divided into three sections A, B and C. Write answers as per the given instructions.

Section - A
$8 \times 2=16$
(Very Short Answer Type Questions)
Note: Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 2 marks.

1) (i) Define a function space.
(ii) What is multi linear mapping?
(iii) Define an inner product space.
(iv) Define an adjoint operator on a Hilbert space.
(v) Define derivatives on a Banach space.
(vi) Define regulated function for a Banach space.
(vii) What is \in - approximate solution for a differential equation $\frac{d x}{d t}=g(t, x) ?$
(viii)Define Eigen space of an operator T on a Hilbert space.

Section - B

$4 \times 8=32$
(Short Answer Questions)
Note: Answer any four questions. Each answer should not exceed 200 words. Each question carries 8 marks.
2) Show that every compact subset of a normed space is bounded but its converse is need not be true.
3) Prove that an inner product in a Hilbert space is jointly continuous.
4) If $\left\{e_{i}\right\}$ is an orthonormal set in a Hilbert space H, then prove that $\sum_{i=1}^{\infty}\left|\left(x, e_{i}\right)\right|^{2}=\|x\|^{2}, \forall x \in H$
5) If P and Q are projection on closed linear subspace M and N of a Hilbert space H , then prove that $M \perp N \Leftrightarrow P Q=0 \Leftrightarrow Q P=0$
6) Let X and Y be Banach space over the same field K and V be an open subset of X . Let $f: \mathrm{V} \rightarrow \mathrm{Y}$ be a $(n+1)$ times differentiable function. If the interval $[a, a+h]$ is contained in V and if $\left\|f^{n+1}(x)\right\| \leq M, \forall x \in V$. Then prove that

$$
\left\|f(a+h)-f(a)-f^{\prime}(a) h-\frac{f^{n}(a)}{2!} h^{2}-\ldots-\frac{f^{n}(a)}{n!} h^{n}\right\| \leq \frac{M\|h\|^{n+1}}{(n+1)!}
$$

7) Let u be a non-negative continuous function on an interval $[0, \mathrm{c}], \mathrm{c}>0$ satisfying the inequality $u(t) \leq a t+k \int_{0}^{1} u(s) d s, \forall t \in[0, c]$ then prove that $u(t) \leq \frac{a}{k}\left(e^{k t}-1\right)$ for $t \in[0, c]$
8) Prove that the limit of convergent sequence in a normed space is unique.
9) Prove that if M is a closed linear subspace of Hilbert space H then $H=M \oplus M^{\perp}$

Section - C

$2 \times 16=32$
(Long Answer Questions)
Note: Answer any two questions. You have to delimit your each answer maximum up to 500 words. Each question carries 16 marks.
10) If $C(X)$ be a linear space of all bounded continuous scalar valued function defined on a topological space X. Then show that $C(X)$ is a Banach space under the norm $\|f\|=\operatorname{Sup}\{|f(x): x \in X|\}, \forall f \in C(X)$
11) If B is a complex Banach space whose norm obeys the parallelogram law, and if an inner product is defined on B by $4(x, y)=\|x+y\|^{2}-\|x-y\|^{2}+i\|x+i y\|^{2}-i\|x-i y\|^{2}$, then prove that B is a Hilbert space.
12) Let H be a Hilbert space and $\mathrm{B}(\mathrm{H})$ be the complex Banach space of all bounded linear transformation on H into H . Then prove that the adjoint operator T^{*} of $\mathrm{T} \in \mathrm{B}(\mathrm{H})$ has the following properties
(a) $(T+S)^{*}=T^{*}+S^{*}$
(b) $\quad(\alpha T)^{*}=\bar{\alpha} T^{*}$
(c) $(T S)^{*}=S^{*} T^{*}$
(d) $T^{* *}=T$
(e) $\left\|T^{*}\right\|=\|T\|$
(f) $\quad\left\|T^{*} T\right\|=\|T\|^{2}$
(g) $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$
13) Let f be a function on a compact interval $[a, b]$ of R into a Banach space X over K . Then prove that f is regulated iff the following conditions are satisfied
(i) $\forall c \in[a, b), \lim _{\substack{t \rightarrow c \\ t>c}} f(t)$ exists
(ii) $\forall c \in(a, b], \lim _{\substack{t \rightarrow c \\ t<c}} f(t)$ exists

