MA/MSCMT-06

June - Examination 2018

M.A./M.Sc. (Final) Mathematics Examination Analysis and Advanced Calculus Paper - MA/MSCMT-06

Time: 3 Hours [Max. Marks: - 80

Note: The question paper is divided into three sections A, B and C. Write answers as per the given instructions.

Section - A

 $8 \times 2 = 16$

(Very Short Answer Type Questions)

Note: Answer **all** questions. As per the nature of the question delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 2 marks.

- 1) (i) Define a function space.
 - (ii) What is multi linear mapping?
 - (iii) Define an inner product space.
 - (iv) Define an adjoint operator on a Hilbert space.
 - (v) Define derivatives on a Banach space.
 - (vi) Define regulated function for a Banach space.

(vii) What is \in - approximate solution for a differential equation $\frac{dx}{dt} = g(t, x)?$

(viii)Define Eigen space of an operator T on a Hilbert space.

Section - B
$$4 \times 8 = 32$$
 (Short Answer Questions)

(Short Answer Questions)

Note: Answer **any four** questions. Each answer should not exceed 200 words. Each question carries 8 marks.

- 2) Show that every compact subset of a normed space is bounded but its converse is need not be true.
- 3) Prove that an inner product in a Hilbert space is jointly continuous.
- 4) If $\{e_i\}$ is an orthonormal set in a Hilbert space H, then prove that $\sum_{i=1}^{\infty} |(x, e_i)|^2 = ||x||^2, \forall x \in H$
- 5) If P and Q are projection on closed linear subspace M and N of a Hilbert space H, then prove that $M \perp N \Leftrightarrow PQ = 0 \Leftrightarrow QP = 0$
- 6) Let X and Y be Banach space over the same field K and V be an open subset of X. Let $f: V \to Y$ be a (n+1) times differentiable function. If the interval [a, a+h] is contained in V and if $||f^{n+1}(x)|| \le M$, $\forall x \in V$. Then prove that

$$\left\| f(a+h) - f(a) - f'(a)h - \frac{f''(a)}{2!}h^2 - \dots - \frac{f''(a)}{n!}h^n \right\| \le \frac{M\|h\|^{n+1}}{(n+1)!}$$

7) Let u be a non-negative continuous function on an interval [0, c], c>0 satisfying the inequality $u(t) \le at + k \int_0^1 u(s) ds, \forall t \in [0, c]$ then prove that $u(t) \le \frac{a}{k} (e^{kt} - 1)$ for $t \in [0, c]$

- 8) Prove that the limit of convergent sequence in a normed space is unique.
- 9) Prove that if M is a closed linear subspace of Hilbert space H then $H = M \oplus M^{\perp}$

Section - C
$$2 \times 16 = 32$$

(Long Answer Questions)

Note: Answer **any two** questions. You have to delimit your each answer maximum up to 500 words. Each question carries 16 marks.

- 10) If C(X) be a linear space of all bounded continuous scalar valued function defined on a topological space X. Then show that C(X) is a Banach space under the norm $||f|| = Sup\{|f(x):x \in X|\}, \forall f \in C(X)$
- 11) If B is a complex Banach space whose norm obeys the parallelogram law, and if an inner product is defined on B by $4(x,y) = \|x+y\|^2 \|x-y\|^2 + i\|x+iy\|^2 i\|x-iy\|^2, \text{ then prove that B is a Hilbert space.}$
- 12) Let H be a Hilbert space and B(H) be the complex Banach space of all bounded linear transformation on H into H. Then prove that the adjoint operator T^* of $T \in B(H)$ has the following properties

(a)
$$(T+S)^* = T^* + S^*$$

(b)
$$(\alpha T)^* = \bar{\alpha} T^*$$

(c)
$$(TS)^* = S^*T^*$$

(d)
$$T^{**} = T$$

(e)
$$||T^*|| = ||T||$$

(f)
$$||T^*T|| = ||T||^2$$

(g)
$$(T^*)^{-1} = (T^{-1})^*$$

- 13) Let *f* be a function on a compact interval [*a*, *b*] of R into a Banach space X over K. Then prove that *f* is regulated iff the following conditions are satisfied
 - (i) $\forall c \in [a,b), \lim_{\substack{t \to c \\ t > c}} f(t)$ exists
 - (ii) $\forall c \in (a,b], \lim_{\substack{t \to c \\ t < c}} f(t)$ exists