MT-04

June - Examination 2018

B.A. / B.Sc. Pt. II Examination Real Analysis & Metric Space Paper - MT-04

Time: 3 Hours [Max. Marks: - 67

Note: The question paper is divided into three sections A, B and C. Write answers as per the given instructions. Use of non-programmable scientific calculator is allowed in this paper.

निर्देश: यह प्रश्न पत्र 'अ', 'ब' और 'स' तीन खण्डों में विभाजित है। प्रत्येक खण्ड के निर्देशानुसार प्रश्नों का उत्तर दीजिए। इस प्रश्नपत्र में नॉन-प्रोग्रामेबल साइंटीफिक केल्कुलेटर के उपयोग की अनुमित हैं।

Section - A

 $7 \times 1 = 7$

(Very Short Answer Type Questions)

Note: Section 'A' contain seven (07) Very Short Answer Type Questions. Examinees have to attempt all questions. Each question is of 01 mark and maximum word limit may be thirty words.

खण्ड - 'अ'

(अति लघु उत्तर वाले प्रश्न)

निर्देश: खण्ड 'अ' में सात (07) अतिलघुउत्तरात्मक प्रश्न हैं, परिक्षार्थियों को सभी प्रश्नों को हल करना हैं। प्रत्येक प्रश्न के 01 अंक है और अधिकतम शब्द सीमा तीस शब्द हैं।

- (i) Define Infimum.
 निम्नक को परिभाषित कीजिए।
 - (ii) Define neighbourhood of a real number. एक वास्तविक संख्या के प्रतिवेश को परिभाषित कीजिए।
 - (iii) Define Cauchy's Sequence. कोशी अनुक्रम को परिभाषित कीजिए।
 - (iv) Explain discontinuity of second type. द्वितीय प्रकार की असातत्यता को समझाइए।
 - (v) Explain norm of a partition. विभाजन के मानक को समझाइए।
 - (vi) Define Pseudo-Metric. छद्म दूरीक को परिभाषित कीजिए।
 - (vii) Define complete metric space. पूर्ण दूरीक समष्टि को परिभाषित कीजिए।

Section - B

 $4 \times 8 = 32$

(Short Answer Questions)

Note: Section 'B' contain Eight Short Answer Type Questions. Examinee will have to answer any four (04) questions. Each question is of 08 marks. Examinees have to delimit each answer in maximum 200 words.

(खण्ड - ब)

(लघु उत्तरीय प्रश्न)

निर्देश: खण्ड 'ब' में आठ लघु उत्तर प्रकार के प्रश्न है, परिक्षार्थियों को किन्ही भी चार (04) सवालों के जवाब देना हैं। प्रत्येक प्रश्न 08 अंक का है। परीक्षार्थियों को अधिकतम 200 शब्दों में प्रत्येक जवाब परिसीमित करने है।

- 2) Prove that there have infinitely many rational numbers between two distinct real numbers.
 - सिद्ध कीजिए कि दो भिन्न वास्तविक संख्याओं के मध्य अनंत परिमेय संख्याए विद्यमान होती हैं।
- 3) Prove that every infinite bounded set has at least one limit point. सिद्ध कीजिए कि प्रत्येक अपरिमित परिबद्ध समुच्चय का कम से कम एक सीमा बिन्द् होता हैं।
- 4) Prove that a continous function in a closed interval is bounded in that interval.
 - सिद्ध कीजिए कि संवृत अंतराल में संतत् फलन उस अंतराल में परिबद्ध भी होता हैं।
- 5) Using $\epsilon \delta$ method show that function f(x, y) = xy is continuous on every point of $R \times R$.
 - $\epsilon \delta$ विधि से प्रदर्शित कीजिए कि फलन f(x, y) = xy R × R के प्रत्येक बिन्दु पर संतत् हैं।
- 6) Show that it is not necessary that every bounded function is Riemann Integrable.
 - प्रदर्शित कीजिए कि प्रत्येक परिबद्ध फलन आवश्यक नहीं कि रीमान समाकलनीय हो।

- 7) State and prove first mean value theorem of integral calculus. समाकलन गणित की प्रथम मध्यमान प्रमेय को कथन कर सिद्ध कीजिए।
- 8) Find $S\left(\frac{1}{2},1\right)$ and $\bar{S}\left(\frac{3}{4},\frac{1}{2}\right)$ in set [0,1] for metric d(x,y)=|x-y| . समुच्चय [0,1] में दूरीक d(x,y)=|x-y| के लिए $S\left(\frac{1}{2},1\right)$ व $\bar{S}\left(\frac{3}{4},\frac{1}{2}\right)$ ज्ञात कीजिए।
- 9) Show that a non-empty closed subset of compact metric space is compact.
 प्रदर्शित कीजिए कि संहत दूरीक समष्टि का अरिक्त सवृंत उपसमुच्चय सहंत होता है।

Section - C $2 \times 14 = 28$ (Long Answer Questions)

Note: Section 'C' contain 4 long Answer Type Questions. Examinees will have to answer any two (02) questions. Each question is of 14 marks. Examinees have to delimit each answer in maximum 500 words.

(खण्ड – स) (दीर्घ उत्तरीय प्रश्न)

निर्देश: खण्ड 'स' में 4 निबन्धात्मक प्रश्न हैं। परीक्षार्थियों को किन्ही भी दो (02) सवालों के जवाब देना हैं। प्रत्येक प्रश्न 14 अंकों का है, परिक्षार्थियों को अधिकतम 500 शब्दों में प्रत्येक जवाब परिसीमित करने है।

- 10) (i) Using definition of limit of sequence show that sequence $\{\sqrt{n+1}-\sqrt{n}\}$ converges to 0 (zero). अनुक्रम की सीमा की परिभाषा का प्रयोग करते हुए प्रदर्शित कीजिए कि अनुक्रम $\{\sqrt{n+1}-\sqrt{n}\}$, 0 को अभिसृत होती है।
 - (ii) If $\{x_n\}$ is a sequence of positive terms and $\frac{\lim}{n\to\infty}x_n=l$ then show that $\frac{\lim}{n\to\infty}\{x_1\ x_2\\ x_n\}^{1/n}=l$.

 यदि $\{x_n\}$ धनात्मक पदों का अनुक्रम हो तथा $\frac{\lim}{n\to\infty}x_n=l$ तब प्रदर्शित कीजिए कि $\frac{\lim}{n\to\infty}\{x_1\ x_2\\ x_n\}^{1/n}=l$ होगा।
- 11) If function f is differentiable in interval [a, b] and a number k lie between $f^1(a)$ and $f^1(b)$ then prove that point C lie in interval (a, b) such that $f^1(c) = k$.

 यदि फलन f अंतराल [a, b] में अवकलनीय है तथा $f^1(a)$ व $f^1(b)$ के मध्य कोई संख्या k है तो अंतराल (a, b) में बिन्दु C इस सिद्ध कीजिए कि विद्यमान है कि $f^1(c) = k$
- 12) (i) Show that sequence $\langle f_n \rangle$ where $f_n(x) = \frac{x}{1 + nx^2} \, \forall x \in \mathbb{R}$ is uniformly convergent. प्रदर्शित कीजिए कि अनुक्रम $\langle f_n \rangle$ जहां $f_n(x) = \frac{x}{1 + nx^2} \, \forall x \in \mathbb{R}$ एकसमान अभिसारी है।
 - (ii) Show that term by term differentiation of series whose sum of n terms is $\frac{nx}{1+n^2x^2}$, $0 \le x \le 1$ is not possible at x=0. प्रदर्शित कीजिए कि श्रेणी, जिसके n पदों का योगफल $\frac{nx}{1+n^2x^2}$, $0 \le x \le 1$ हैं का x=0 पर पदशः अवकलन संभव नहीं है।

- 13) (i) If (X, d) is a metric space and A is any subset of X then show that A° is greater open set contained in A. यदि (X, d) एक दूरीक समष्टि है तथा A, X का कोई उपसमुच्चय है तब प्रदर्शित कीजिए कि A°, A में समाहित होनेवाला महत्तम विवृत्त समुच्चय है।
 - (ii) If X and Y are metric spaces then prove that a mapping $f: X \to Y$ is continous on X If and only if for every closed subset A of Y, pre image \bar{f}^1 (A) is closed in X. यदि X व Y दूरिक समष्टिया हैं। सिद्ध कीजिए कि एक प्रति चित्रण $f: X \to Y$ वर संतत् हैं यदि और केवल यदि Y के प्रत्येक संवृत उपसमुच्चय A के लिए पूर्व प्रतिचित्रण \bar{f}^1 (A), X में सवृंत हैं।